HomeAboutusEditorial BoardCurrent issuearchivesSearch articlesInstructions for authorsSubscription detailsAdvertise

  Login  | Users online: 312

   Ahead of print articles    Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size  


 
ORIGINAL ARTICLE Table of Contents   
Year : 2007  |  Volume : 32  |  Issue : 4  |  Page : 268-271
 

A comparative study of air pollution-related morbidity among exposed population of Delhi


1 National Institute of Health and Family Welfare, Delhi, India
2 Department of CHA, National Institute of Health and Family Welfare, Delhi, India

Date of Submission28-Apr-2006
Date of Acceptance15-Oct-2007

Correspondence Address:
M Bhattacharya
Department of CHA, National Institute of Health and Family Welfare, New Mehrauli Road, Munirka, New Delhi - 110 067
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-0218.37692

Rights and Permissions

 

   Abstract 

Background: Vehicular pollution is increasing in Indian cities, which may lead to increased number of patients with diseases related to air pollution. Present study was undertaken to assess the pattern of morbidity in two areas of Delhi, one highly polluted area (HPA) and the other low polluted area (LPA). Materials and Methods: Subjects were interviewed regarding socioeconomic status and exposure history. Symptoms during the last month were recorded in a questionnaire and weight, height and peak expiratory flow rate (PEFR) were measured. Air pollution data were obtained from the monitoring stations of Central Pollution Control Board (CPCB). Results: A total of 640 subjects participated in the study. Majority of the patients in both the areas were educated till primary but 24% in HPA and 13% in LPA were graduates. Current levels of all pollutants (except SO2 and NOx) were above the safety levels prescribed by CPCB in both the areas, but the values were much higher in HPA. The values of PEFR amongst study population were more compromised in HPA. The difference in mean PEFR values among the populations in LPA and HPA were found to be statistically significant (P < 0.05). The mean number of symptoms experienced by subjects of HPA was more as compared to LPA (P < 0.05). Frequency of occurrence of symptoms varied with duration of stay in the study area. Children were affected more than the adults. Conclusion: Air pollution has a deleterious effect on various systems of the body.


Keywords: Air pollution, exposure, health effects, peak expiratory flow rate, vehicular emissions


How to cite this article:
Sagar A, Bhattacharya M, Joon V. A comparative study of air pollution-related morbidity among exposed population of Delhi. Indian J Community Med 2007;32:268-71

How to cite this URL:
Sagar A, Bhattacharya M, Joon V. A comparative study of air pollution-related morbidity among exposed population of Delhi. Indian J Community Med [serial online] 2007 [cited 2019 Jul 21];32:268-71. Available from: http://www.ijcm.org.in/text.asp?2007/32/4/268/37692


Air quality is deteriorating especially in metropolitan cities, mainly due to vehicular emissions. There is good evidence that the health of 900 million urban people over the world is deteriorating daily because of high levels of ambient air pollutants.[1] The toxicology of air pollution is exceedingly complex as there are different types of pollutants affecting individual differently.[2]

The pollutants in air namely SO2, NOx and suspended particulate matter (SPM) damage the human respiratory and cardio respiratory systems in various ways. The elderly, children, smokers and those with chronic respiratory diseases are most vulnerable.[3] It has been reported that high levels of pollution affect mental and emotional health too. Amongst the symptoms, feeling of fatigue, exhaustion, low mood, nervousness, irritation of eyes and stomach aches have shown a significant association with air quality. Inhalation of fumes is associated with recurrent colds, chronic bronchitis and hyperactive airways.[4] Elevated lead levels in children have been associated with impaired neurological development as measured by lowered IQ, poor school performance and behavioural difficulties.[3]

Environmentalists claim that living in an Indian metropolitan city is like smoking 10-20 cigarettes every day. More than 40,000 people die pre-maturely every year because of air pollution, says a World Bank report, of which Delhi's share is the highest (19%).[5] The estimates of disease burden due to urban air pollution are based on the impact of air pollution on mortality. The impact of air pollution on morbidity could not be included in the calculations due to lack of reliable epidemiological data. Few studies have been conducted on the health effects of air pollution in the general population of Delhi. This study is an effort to identify the adverse health impacts due to air pollution on communities residing in areas of high and low ambient pollution levels.


   Materials and Methods Top


This descriptive study was carried out in Delhi, the capital of India. The study areas were taken up randomly from among the areas already identified by the central pollution control board. Daryaganj was identified as highly polluted area (HPA) and Gazipur as low polluted area (LPA). The mean level of pollutants during the previous 1 year was recorded. Two population groups, one from HPA and other from LPA were selected for this study. A sample of 320 people each was taken up from both LPA and HPA. The sample size was based on the prevalence of symptoms and signs in the studies done earlier, which had found the frequency of mucosal irritation as 39.7% and eye symptoms as 26.9%[6] with 10% error. Inclusion criteria for the study was that the person should be living and working in the selected areas for more than 6 months, be below 45 years (to rule out respiratory symptoms associated with old age) and be a non-smoker. The study population was disaggregated into four age groups. The age groups were: 0-5 years, 6-13 years, 14-22 years and 23-45 years, with a sample size of 80 subjects in each age group. Males outnumbered females in both the areas. In HPA, 78% and in LPA, 75% subjects were males.

A pre-coded structured interview schedule was prepared to collect the data. Past history of relevant illness was obtained from the medical records of individuals. Medical examination and certain measurements like weight, height, blood pressure and peak expiratory flow rate (PEFR) were carried out on the spot for each study subject. The levels of pollutants namely SPM [respirable suspended particulate matter (RSPM) and total suspended particulate matter (TSPM)], NO2, SO2 and lead as measured by CPCB were obtained by the investigators. The adverse health effects of pollutants were based on the list of symptoms prepared by the Society for Environment and Health.[7] The data were analysed with spss and appropriate statistical tests like chi-square test, odds ratio and standard error of mean were used.


   Results Top


The mean values of all pollutants (except SO2 and NO2) exceeded the recommended National Ambient Air Quality Standards (NAAQS) prescribed for residential areas in both Daryaganj and Gazipur, but the values were much lower in Gazipur (LPA).[8] The levels of TSPM, RSPM and lead were much above the safety limits prescribed for residential areas by the Central Pollution Control Board for both the study areas.[9] The TSPM levels were 683 and 235 µg/m3 for HPA and LPA, respectively.

Fifty-two percent of people in HPA and 47.2% of people in LPA had 3-5 years of stay in their respective areas, and 32.2% of subjects of HPA and 44% of subjects of LPA have been living in that area for nearly 2 years. As shown in [Table - 1], majority of subjects in both HPA and LPA were educated till primary. The percentage of graduates was more in HPA than in LPA. In HPA, 84.4% and in LPA, 79.4% of the subjects had knowledge about air pollution as a hazard to health.

[Table - 2] shows that the values of PEFR were less in HPA as compared to LPA. The PEFR is the indicator of lung function, which is affected as a result of exposure to air pollution.

When the differences in mean number of symptoms experienced by the individuals of HPA and LPA were compared, it was found that the symptoms were more likely to occur in HPA population than in the subjects residing in the LPA. [Table - 3] shows that higher percentage of subjects of HPA suffered from different symptoms like irritation of nose and eyes, watering of eyes and nose, respiratory infections, breathlessness, ringing in ears and headaches. When the differences between various symptoms experienced by the subjects from HPA and LPA areas were compared, it was found that the symptoms were statistically significant except for a few symptoms like febrile conditions and common cold.

The individual symptoms were analyzed for different age groups and it was observed that the subjects residing in HPA, irrespective of age were likely to have 1.7 to 3.37 times more chances of suffering with the symptoms related to pollution, compared to the subjects residing in LPA. Further, when we compared the symptoms among different age groups, it was found that the age group 14-22 years had the lowest probability of occurrence of various symptoms amongst all the age groups, while the age group 6-13 years had the highest chance of developing various symptoms.


   Discussion Top


According to the World Health Report 2002, analyses based on particulate matter estimates report that ambient air pollution causes about 5% of trachea, bronchus and lung cancer, 2% of cardio-respiratory mortality and about 1% of respiratory infections mortality globally. This amounts to about 1.4% (0.8 million) deaths and 0.8% (7.9 million) of disability-adjusted life years. The adverse effects of air pollution are more pronounced in developing countries.[10] The problem of air pollution is increasing at an alarming rate in Delhi. It is India's most polluted metropolitan city with 70% air pollution of Delhi being caused by vehicles only. This has resulted in higher air pollution-related morbidity among its inhabitants.

The study area in Daryaganj is a highly congested area with heavy traffic density and frequent traffic jams, resulting in build up of air pollutants in that area. This ultimately leads to more exposure to people residing and working in that area. Gazipur on the other hand, is a rural area situated on the outskirts of Delhi with less traffic density and consequently less exposure of its inhabitants.

In the present study, mean levels of pollutant in the study areas were almost comparable to the study done by Kamat and others.[11],[12] In air quality studies, total aerosol in air is measured as TSPM. Course particles are not useful except that it reflects the perception of haze in air and results in diminished visibility. RSPM is the most important fraction from health point of view.

Total exposure of an individual to pollutants is determined by the concentration of pollutants and the duration of exposure. The exposure levels in the study population were measured by the duration of stay of subjects in the study area as up to 2 years, 3-5 years and above 5 years. Sixty-eight percent of the people of HPA and 56% of LPA were staying in the area for more than 3 years. The prevalence of airborne diseases was more in HPA as compared to LPA. This could be due to high levels of air pollutants in their environment specially the RSPM, as these particulates tend to deposit in alveoli and slow down the exchange of oxygen with carbon dioxide in the blood, causing shortness of breath. The number of symptoms observed in this study had more frequency of occurrence in HPA than LPA. The symptoms also vary with different duration of exposure. The findings reported in this study and others regarding respiratory morbidity, lung function and urban air pollutant levels are similar. According to the Health Care Institute of India, there is an alarming rise in number of patients in Delhi hospitals with respiratory problems.[13] A study from Cochin also reported higher prevalence of respiratory symptoms.[14] A study conducted by All India Institute of Medical Sciences and Central Pollution Control Board in Delhi showed that exposure to higher levels of particulate matter contributed to respiratory morbidity. It indicated that the most common symptoms related to air pollution were irritation of eyes (44%), cough (28.8%), pharyngitis (16.8%), dyspnea (16%) and nausea (10%).[15] A similar study in Bombay found the prevalence of symptoms and signs of disease to be around 22.2%.[11]

In the present study, the PEFR values were found to be much lower than Clement Clark's Standard. 83.8% of the subjects of HPA were having PEFR values less than normal as compared to 44.1% of the subjects of LPA. Person with less duration of exposure were found to have more compromised PEFR as compared to those with more exposure, since it was observed that as duration increases the acute symptoms subside. Thus, chronic inhalation of air in Delhi caused decline in lung function in a significant percentage of inhabitants of the city. Kumar et al. reported similar findings where the lung functions such as forced expiratory volume, forced vital capacity and peak expiratory volume (PEV) were found to be much lower than normal.[15] In a similar study by Kumar et al., the increased risk of having chronic respiratory symptoms was 1.5 (95% CI = 1.2, 1.8; P < 0.00) and that of spirometric ventilatory defects was 2.4 (95% CI = 2.0, 2.9; P < 0.001) in the study town compared with the reference population, even after controlling for the effects of age, gender, education, occupation, income, ever smoking, passive smoking, type of cooking fuel and migration.[16]

In a similar study conducted by Chitranjan Cancer Research Institute, Kolkata on 1310 individuals from Kolkata and 200 from rural West Bengal, symptoms related to problems in the upper respiratory tract were found in 47.8% of urban people in contrast to 35% of rural controls. Respiratory symptoms were most frequent during winter when the pollution level of the city with respect to respirable particulate matter was the highest. The percentage of individuals with impaired lung function (47%) correlated well with the frequency of lower respiratory symptoms (47.8%) in urban people.[17] In another study that compared the ventilatory functions of two groups of school children of Kolkata, one within CMA (study) and another in an area with better ambient air quality, the observations were indicative of a statistically significant impairment of lung functions (PEFR) in the study group exposed to higher concentration of pollutants in the ambient air.[18]

In the present study, asthma was observed in 23% of patients in HPA compared to 9% in LPA. Allergy and dermatitis was also more in HPA (15.9%) than in LPA (4.7%) population. Thus, the present study is comparable to the studies done earlier by Joshi, in which it was found that lung function was lower in more polluted city zone. For morbidity, the urban area with high levels of pollution was the worst, the medium areas slightly better and the low areas best. The study concluded that most of the health effects observed could be attributed to multiple pollutants.[4],[7] All these findings both from the present and past studies warrant long-term perspective studies in view of the possible risk of developing obstructive lung diseases.

 
   References Top

1.Ghosh MK, Paul R, Banerjee SK. Assessment of the impacts of the vehicular pollution on urban air quality. J Environ Sci Engg 2004;46:33-40.  Back to cited text no. 1    
2.Yassi A, Kjellstroom T, Kok TD, Guidotti T. Basic Environmental Health. Oxford University Press: Oxford; 2001.  Back to cited text no. 2    
3.Sapru RK. Environmental management in India. Air Pollution 1987;1:145-7.  Back to cited text no. 3    
4.Smith KR. Air pollution and rural biomass in developing countries: A pilot village study in India and implication for research and policy. Atmospheric Environ 1993;17:2343-62.  Back to cited text no. 4    
5.David B. Environmental health risks and public policy. Washington Press: Washington DC; 1994.  Back to cited text no. 5    
6.Lercher P, Schitzberger R, Kofler W. Perceived traffic air pollution, associated behavior and health in an alpine area. Sci Total Environ 1995;169:71-4.  Back to cited text no. 6    
7.Joshi TK. Asbestos related morbidity in India. Int J Occup Env Health 2003;9:249-53.  Back to cited text no. 7    
8.National Ambient Air Quality Monitoring Series, Central Pollution Control Board Report, Delhi: Ministry of Environment and Forest, Government of India, 1996-97.  Back to cited text no. 8    
9.Pollution Control Acts, Rules and Notification issued there under, Central Pollution Control Board, New Delhi: Ministry of Environment and Forest, Government of India, 1998. p. 142-9.  Back to cited text no. 9    
10.World Health Organization. World Health Report 2002. WHO: Geneva; 2002.  Back to cited text no. 10    
11.Kamat SR, Godkhindi KD, Shah BW, Mehta AK, Shah VN. Correlation of health morbidity to air pollution levels in Bombay city, results of prospective three years survey at one year. J Postgrad Med 1980;26:45-62.  Back to cited text no. 11    
12.Respirable particulate matter and its health effects. Central Pollution Control Board: New Delhi; 2001.  Back to cited text no. 12    
13.Survey for assessing the impact of air pollution on health at critically polluted areas of Cochin, Clinical Epidemiology Unit, Medical College, Thiruvananthapuram, New Delhi: Ministry of Environment and Forest, Government of India, 1992-94.  Back to cited text no. 13    
14.Kumar R. Effects of environmental pollution on respiratory system of auto rickshaw drivers in Delhi. Indian J Occup Environ Med 1999;3:171-3.  Back to cited text no. 14    
15.CPCB. Effects of Kolkata's air pollution on adult population: A survey by Chitranjan Cancer Research Institute: Kolkata; 2004. Available from: http://www.cpcb.nic.in.  Back to cited text no. 15    
16.Kumar R, Parwana HK, Sharma M, Srivastva A, Thakur JS, Jindal SK. Association of outdoor air pollution with chronic respiratory morbidity in an industrial town in northern India. Arch Environ Health 2004;59:471-7.  Back to cited text no. 16    
17.CPCB Newsletter. Available from: http://www.cpcb.nic.in.  Back to cited text no. 17    
18.Viegi G. Non-carcinogenic health effects of air pollutants: A European perspective. J Tuber Lung Dis 1994;75:83-4.  Back to cited text no. 18    



 
 
    Tables

  [Table - 1], [Table - 2], [Table - 3]


This article has been cited by
1 Health Risk Assessment of Mobility-Related Air Pollution in Ha Noi, Vietnam
Vu Van Hieu,Le Xuan Quynh,Pham Ngoc Ho,Luc Hens
Journal of Environmental Protection. 2013; 04(10): 1165
[Pubmed] | [DOI]
2 Application of GIS and modelling in health risk assessment for urban road mobility
Van-Hieu Vu,Xuan-Quynh Le,Ngoc-Ho Pham,Luc Hens
Environmental Science and Pollution Research. 2013; 20(8): 5138
[Pubmed] | [DOI]



 

Top
Print this article  Email this article
                 

    

 
   Search
 
  
    Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
    Article in PDF (89 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
    Materials and Me...
    Results
    Discussion
    References
    Article Tables

 Article Access Statistics
    Viewed6011    
    Printed175    
    Emailed0    
    PDF Downloaded495    
    Comments [Add]    
    Cited by others 2    

Recommend this journal

  Sitemap | What's New | Feedback | Copyright and Disclaimer
  © 2007 - Indian Journal of Community Medicine | Published by Wolters Kluwer - Medknow
  Online since 15th September, 2007